Peering Inside WASP-43b: Exploring Tidal Decay and Orbital Evolution
Researchers studied the ultra-hot Jupiter WASP-43b using data from HARPS, JWST, and other sources, detecting tidal decay and apsidal precession for the first time in an exoplanet system. These phenomena reveal strong gravitational interactions with its host star but raise unanswered questions about the planet's unique dynamics. The findings provide critical insights into the internal structure and evolution of hot Jupiters.
Decoding WASP-43b: Exploring Water in a Distant Gas Giant's Atmosphere
Scientists studied the atmosphere of the hot Jupiter WASP-43b using high-resolution spectroscopy, detecting water with a precise abundance measurement. Other molecules like methane and carbon dioxide were not found, and the carbon-to-oxygen ratio was constrained to less than 0.95. The findings align with prior observations from JWST, supporting a clearer day side and cloudy night side. Future telescopes may uncover more details about the planet's atmospheric composition.
Exploring Exoplanet Atmospheres: Low-Resolution Spectroscopy of Three Hot Jupiters with the Himalayan Chandra Telescope
This study used the Himalayan Chandra Telescope to perform transmission spectroscopy on three hot Jupiters, HAT-P-1b, WASP-127b, and KELT-18b, marking the first time this telescope was used for such analysis. The team observed Rayleigh scattering in the atmospheres of HAT-P-1b and WASP-127b, suggesting hazy atmospheres, while KELT-18b showed a relatively featureless spectrum. By combining ground-based data from HCT with space-based infrared observations, the researchers improved their atmospheric models, demonstrating the potential of smaller telescopes in exoplanet studies.